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ABSTRACT
The study of regional COVID-19 daily reported cases is used to understand pattern of spread and
disease progression over time. These data are challenging to model due to noise that is present,
which arises from failures in reporting, false positive tests, etc., and the spatial dependence be-
tween regions. In this work, we extend a recently developed Bayesian modeling framework for
inference of functional data to jointly estimate and cluster daily reported cases data from US
states, while accounting for spatial dependence between US states. Shape-restriction allows us
to directly infer the number of extrema of a smooth infection rate curve that underlies noisy data.
Other parameters in the model account for the relative timing of extrema, and the magnitude and
severity of infection rates. We incorporate mobility behavior of each US state’s population into
an informative prior model to account for the spatial dependence between US states. Our model
corroborates past work that shows that different US states have indeed experienced COVID-19
differently, but that there are regional patterns within the US. The modeling results can be used
to assess severity of infection in individual US states and trends of neighboring US states to aid
pandemic planning. Retrospectively, this model can be used to see which factors (governmental,
behavioral, etc.) are associated with the varying shapes of infection rate curves, which is left as
future work.

ction
19, the outbreak of Coronavirus Disease - 2019 (COVID-19) was reported in Wuhan, China, and the
y spread worldwide in early 2020 (Wu, Chen and Chan, 2020). The United States (US), which is the
ork, has been one of the most affected countries in the world. Within months of the first reported cases
re infections were reported than in any other country, and the disease has remained a major problem for
safety of its citizens (Omer, Malani and del Rio, 2020). Unmitigated growth of infections could poten-
den hospital resources, and poses a severe threat to individuals in populations associated with increased
illness and mortality (Wolff, Nee, Hickey and Marschollek, 2020). These facts have brought epidemio-
ing of COVID-19 to the foreground in hopes that understanding disease progression, transmission, and
will inform public health interventions (Thompson, 2020; Pei, Kandula and Shaman, 2020).
ranco, Mohler, Short and Sledge (2020) state that the novelty and dynamic nature of COVID-19 are the

enges in effective modeling, and offer a survey of modeling approaches. Many current models rely on
ental Susceptible-Infected-Recovered (SIR) models and its variants (Cooper, Mondal and Antonopoulos,
Cota, Gómez-Gardeñes, Gómez, Granell, Matamalas, Soriano and Steinegger, 2020; Giordano, Blan-
Colaneri, Filippo, Matteo and Colaneri, 2020; Sharma, Volpert and Banerjee, 2020; Xue, Jing, Miller,
da-Franco, Hyman and Zhu, 2020). SIR models directly model the mechanism of infection and spread,
ntly, are able to explicitly infer important quantities, such as reproductive numbers, which quantify the
s of a disease. As the pandemic progresses, there is a need to understand dynamic changes in infection
s differences in geographic regions. Traditional SIR models do not specialize in capturing the flexible
of pandemic curves and can ignore important spatial information, resulting in limited applicability in

al modelling and potential biased inference due to model misspecification, especially for a novel disease.
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rk, we focus on modelling spatial patterns and temporal trends of infection rate curves. In contrast
els, Functional Data Analysis (FDA) offers more flexible approaches for understanding trends (Boschi,
remona and Chiaromonte, 2020; Srivastava and Chowell, 2021). The flexibility of FDA enables the
of spatial information into modeling, and allows for spatial information to support various statistical
(Pan, Shen and Hu, 2020). Consequently, FDA approaches can be used to account for important aspects
he disease, such as spatial heterogeneity (Thomas, Huang, Yin, Luo, Almquist, Hipp and Butts, 2020)
pendence (Guliyev, 2020). COVID-19 has manifested differently in regions within the same country
uenced awareness and response to the disease. The dependence among transmission dynamics of states
ter-state transportation and similarity in socioeconomic factors, climate, and public health policy, which
e spatial distribution of states (Badr, Du, Marshall, Dong, Squire and Gardner, 2020; Cintia, Pappalardo,
dda, Boschi, Giannotti, Chiaromonte, Bonato, Fabbri, Penone et al., 2020). We propose a FDA model
for both spatial heterogeneity and dependence.
es from FDA use smooth infection rate curves based on daily reported cases to study regional infection
through cluster analysis. With the exception of Srivastava and Chowell (2021), these works tend to
istinct forms of variability in functional data: amplitude, which quantifies features of functions, e.g.
d number of extrema, and phase, which quantifies the relative timing of the amplitude features. Within
modeling US states’ infection rate curves, amplitude and phase components provide complementary
out how each US state has experienced the pandemic. The study of amplitude enables an interpretation
de and pattern of spread of the infection in each US state. On the other hand, the study of phase quantifies
when US states experienced ebbs and flows of infections.
arath, Chkrebtii and Kurtek (2021) recently developed a Bayesian modeling framework for estimation
pes of functional data in the presence of phase variation. In this work, we extend their framework to
xtrema information of infection rate curves from daily reported COVID-19 cases while accounting for
tial dependence. Our primary contributions are summarized as follows:
of the Bayesian paradigm allows us to jointly model three types of variation in COVID-19 infection
amplitude, phase, and spatial variation. The latent amplitude and phase components are modelled as
l parameters, through a formulation rooted in the Elastic Functional Data Analysis (EFDA) framework
a, Wu, Kurtek, Klassen and Marron, 2011). Spatial dependence is introduced through judicious choice
istributions for model parameters. Moreover, the Bayesian framework allows for structured uncertainty
tion of all of these aspects of the model.
osed spatial prior not only includes information about the neighborhood structure among US states,
mportant covariate information in terms of community mobility data. We implement amplitude-phase
n in defining a variogram to estimate a spatial correlation measure.
shape-restricted perspective for inference which enables the analysis of amplitude and phase variability
sence of noisy data. Further, the model allows us to infer the number and pattern of extrema of infection
s. As we show in Section 4, extrema are useful in understanding the pattern of infections within US
d heterogeneity of infections between US states. We use extrema to inform spatial clustering, which
gional patterns of COVID-19 infection rates throughout the US. The parameters for phase quantify
s in timing of extrema of infection rate curves and also contribute to our spatial clustering results.
nder of this paper is organized as follows. In Section 2, we discuss the data that we use to inform our
tion 3, we briefly discuss the EFDA framework which serves as the theoretical foundation of our model,
our model. In Section 4, we discuss our modeling results. In Section 5, we summarize our contributions
ture work.

scription
l daily reported cases data calculated from cumulative reported cases data compiled by The COVID
ect. The COVID Tracking Project is a volunteer organization that is dedicated to manually compiling
states’ COVID-19 dashboards andmaking them publicly available (Covid Volunteer Team, 2020). Figure
ows the cumulative reported cases data for the 50 US states and Washington DC, which we simply refer
es’ in our study, and panel (b) shows daily reported cases data for these US states, which are used to
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(a) (b) (c)

Number of cumulative reported cases in each US state and Washington DC. (b) Number of daily reported
US state and Washington DC. (c) Mobility data, smoothed using a 7-day moving average, that represent
nge from baseline for typical time spent in a residential area of each US states’ population.

odel. As is shown in Section 4, the infection rate curves that underlie the noisy data in panel (b) have
rns of extrema in terms of number and location, with regional similarities in the shapes of these curves.
orate spatial dependence into our model through the use of informative prior probability modeling that
orrelation between neighboring US states. In our model, the spatial correlations between US states
by geographic distance between states and also the similarity in US states’ mobility behavior. This
important to be included in our model, since early studies of the COVID-19 pandemic in the US and
s (Badr et al., 2020; Kraemer, Yang, Gutierrez, Wu, Klein, Pigott, Du Plessis, Faria, Li, Hanage et al.,
ha, Liu, Li, Lan, Guan, Hu, Li, Zhang, Thompson et al., 2020) suggested that mobility is an essential
ted with infection rates. To quantify mobility, we use the community mobility data collected by Google
, 2020). The mobility reports track daily percentage changes in the duration of time spent in residential
to a pre-pandemic baseline for the population in each US state. We display smoothed versions of these
1 panel (c). These mobility data take the form of functional observations that capture similarities in
’ populations responded to the pandemic and the ensuing public health policies. We find them useful for
e spatial dependence in our model as discussed in Section 3.3.
ut this work, all data was recorded starting from March 12th, 2020, the day after the pandemic was
e World Health Organization (Ghebreyesus, 11 March 2020), through October 25th, 2020. As is often
ce (Ramsay and Silverman, 2005; Srivastava and Klassen, 2016), the different days throughout this span
d as time points on the unit interval, t ∈ [0, 1]. Further discussion of these data and pre-processing are
ection 1 of the Supplemental Material.

s
tion, we briefly summarize the EFDA framework, which serves as the theoretical background of our
ed by our model specification for COVID-19 infection rate curves.
Functional Data Analysis Background
mentioned in Section 1, one of the primary challenges in working with functional data is the presence of
phase variability (Marron, Ramsay, Sangalli and Srivastava, 2015). Within the context of COVID-19

curves, there are likely many factors associated with the presence of these variabilities, including the date
ere first reported, the latency of reporting due to limited testing capacity in early stages of the pandemic,
response to perceived surges in infections, etc. While there are many approaches to addressing the issues
h these types of variabilities (Ramsay and Silverman, 2005; Srivastava and Klassen, 2016), we choose to
e EFDA framework (Srivastava et al., 2011), which accounts for amplitude and phase variability through
procedure with desirable properties.
ration procedure decomposes a functional dataset, f1,… , fn, into a set of amplitude functions, f̃1,… , f̃n,ctions, 1,… , n, such that their composition is equal to the original functional dataset , fi = f̃i◦i i =phase functions are elements of the group of diffeomorphisms on the unit interval, Γ = { ∶ [0, 1] →
0, (1) = 1, ̇ > 0}, where ̇f represents the time derivative of a function f . For identifiability, the
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er mean of the phase functions is forced to be the identity warping, id(t) = t. The optimality criterion
ine the registration is based in the Fisher-Rao Riemannian metric on the space of absolutely continuous
are root velocity function (SRVF) representation is a crucial ingredient of the EFDA framework, since
ple computation of the Fisher-Rao Riemannian metric. The SRVF of a function, f , is defined as, q =
| ̇f |. This representation is invertible, if in addition to the SRVF, q, one also records the starting point
n, f(0), Q−1(q, f (0))(t) ∶= f (0) + ∫ t0 q(s)|q(s)|ds. Our model, presented in the next subsection, relies
esentation to decompose amplitude and phase of infection rate curves through model parameters.
restricted Amplitude Model
ote the daily reported cases, as discussed in Section 2, and let ti represent days where non-missing values
for the ith US state, i = 1,… , 51. Throughout this section, we use the notation f (ti) to denote a vector ofations (f (ti,1),… , f (ti,mi ))

⊤, where mi is the length of ti. We assume the following observation model,
−1(q(Hi,Mi)

i , Ti)◦i)(ti) + �i(ti), i = 1,… , 51. (1)
the daily reported cases data for the ith US state as perturbations of a smooth infection rate curve,
, Ti)◦i), whose components q(Hi,Mi)

i , i, Ti denote amplitude, phase, and translation, respectively. The
ponent q(Hi,Mi)

i is indexed by the parameters Hi andMi that determine the number and ordering of
function Q−1(q(Hi,Mi)

i , Ti).
ent the amplitude component q(Hi,Mi)

i via an expansion of shape-restricted basis functions (Wheeler,
erring, 2017), {W (Hi,Mi)

b }Bb=1,

=
B∑
b=1

�i,bW
(Hi,Mi)
b . (2)

ents are defined as W (Hi,Mi)
b (t) = Mi(

∏Hi
ℎ=1(t − �

(Hi)
ℎ ))Ub(t), b = 1,… , B, where Ub(t) are B-spline

s, and the basis coefficients are assumed to follow aweakly-informative exponential prior, �i,b iid∼ exp(��).we select a value of B = 10 based on exploratory data analysis to reflect a flexible, yet parsimonious
ussed in Matuk et al. (2021), the shape-restricted basis is robust to the choice of B for fixed values of
s basis representation forces the amplitude component of the model, q(Hi,Mi)

i , to be zero at the values
h is a vector of Hi evenly spaced points throughout the domain. The zeros of q(Hi,Mi)

i correspond to
e functionQ−1(q(Hi,Mi)

i , Ti). The parameterMi determines the ordering of extrema. For example, when
1 enforces Q−1(q(Hi,Mi)

i , Ti) to have a local maximum followed by a local minimum, whileMi = −1
q(Hi,Mi)
i , Ti) to have a local minimum followed by a local maximum.

ction curves for states exhibit variations in numbers of peaks and valleys, we extend the model by Matuk
where Hi andMi are fixed a-priori, to allow for Hi andMi to take on a range of values. We specify a
r these parameters as,

ℎ|{Hj}j≠i) ∝ (1 − �) + �

∑
j≠i∶ Hj=ℎ !i,j

K
, ℎ = 0, 1,… ,Hmax, (3)

Mi =

{
1 Hi is even
−1 Hi is odd .

(4)

f extrema for the infection rate curve of the ith US state, Hi, is able to vary between 0 to Hmax, andalues depend on nearby US states. The value of Hmax = 5 enforces the assumption that no state has
ore than 3 distinct waves of infections throughout the time that the data has been collected, which was
on exploratory data analysis of the observations. In general, specification of the parameter Hmax too
lt in oversmoothing features of the data, and Hmax too large can result in mistaking noise as extrema.

−1 (Hi,Mi)
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dence betweenHi andHj is measured by a spatial weight, !i,j , where the weights are truncated so thatg US states have a positive weight. These weights depend both on geographic distance and similarity in
f US states populations’ mobility behavior during the pandemic. The methodology for determining the
cussed in Section 3.3. The constant K = 8 corresponds to the largest number of bordering US states
ate, and normalizes the spatial component of the prior to a value between 0 and 1. The regularization
[0, 1], determines the strength of regularization. When � = 0, the number of extrema in the smooth
rate curve for each US state follows a discrete uniform prior that does not depend on neighboring US
� approaches 1, the prior onHi, the number of extrema in the smooth daily infection rate curve for state
e numbers of extrema that are similar to those of its neighbors. In this work, we select a moderate value
using sensitivity analysis to strike a balance between incorporating spatial information into the model
larization. Section 2 in the Supplemental Material discusses the sensitivity analysis and corresponding
is parameter.
component of the ith US state, i, shifts the extrema of the function Q−1(q(Hi,Mi)

i , Ti) to fit the the dailydata. The prior is defined through the finite difference of a discretized phase function,
) ∶= (i(t,1),… , i(t,k) − i(t,k−1),… , i(t,m ) − i(t,m−1))

⊤ ∼ Dirichlet(�p(id(t ))), (5)
harath and Kurtek (2020), where t is a grid of evenly space points along the domain and � is a con-erparameter that we choose to correspond to a diffuse prior. We assume an independent and identically
i) ∼ Nmi (0mi , �

2
i Imi )), which elicits a normal likelihood, and wemodel the translation and noise variance

ate with weakly-informative normal and inverse-gamma conjugate priors, respectively.
nference is based on Markov chain Monte Carlo (MCMC) samples from an adaptive parallel tempering
ait, Chkrebtii and Kurtek, 2019), where the temperature scheme (Geyer, 1991) and the proposal param-
etropolis-within-Gibbs algorithm (Roberts and Rosenthal, 2009) are automatically tuned for efficiency.
e our hierarchical model and discuss MCMC implementation in Section 3 of the Supplemental Material.
Weights Informed by Mobility Data
by the association between infection rate and community mobility, spatial correlation between US states’
is used to inform the dependence between the number of extremaHi in infection rate curves. Modeling
ence of mobility data for constructing a prior distribution of Hi is challenging, since the state-level
unity mobility records are functional data that exhibit phase variation. The presence of phase variation
ter-state dependence structure, and can cause biased inference when ignored. The shape parameter Hito the fluctuation of infection rate curves but invariant to phase variation, so we desire that the estimated
relation of mobility data is also invariant to potential phase variation. To satisfy this requirement, the
e-variogram approach proposed by Guo, Kurtek and Bharath (2020) is implemented to measure the
on between the amplitudes of mobility curves.
tude trace-variogram is defined based on amplitude-phase decomposition of a trace-variogram, which is
ial variation measure for functional data (Giraldo, Delicado and Mateu, 2011). We model a random field
unctional values as a coupling of a latent amplitude random field and phase random field. We estimate
trace-variogram through incorporating function registration into variogram estimation. This procedure
al weights that capture correlation between magnitudes of mobility records without interference of phase
ntially caused by various factors, such as lock-down policies among states.
ctional space  = {g ∶ [0, 1] ↦ R ∣ g is absolutely continuous}, consider the functional random field on a spatial coordinate domain ⊂ R2, where at each s ∈ , gs is a random function in . Suppose
ata gsi is one realization of the functional random field in the US state located at si, for i = 1,… , 51.
F representation, the model for the mobility data is,
−1(� + esi )

]
◦�−1si (t), t ∈ [0, 1], i = 1,… , 51, (6)

the unobserved deterministic mean amplitude, constant in space; esi (t) is the random process with mean
nce function (t1, t2) s.t. ∫ 10 (t, t)dt < ∞; �si ∈ Γ is the unobserved random phase component with
Γ for all si ∈ . The inter-state dependence structure of interest is contained in amplitude error esi (t),irectly estimable due to the existence of unknown warping �si (t). Equivalently, the amplitude model is,
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(a) (b) (c) (d) (e)

e) Posterior draws (transparent lines) representing phase (bottom) amplitude (middle) and their composition
observations (dots) superimposed for 5 US states in different clusters.

e random field is defined as {Q(gs◦�s) ∣ s ∈ }. Under the second-order stationary and isotropic
n {Q(gs◦�s) ∣ s ∈ }, the amplitude trace-varioram is defined as a function of spatial distance,

s′‖) = 1
2
E
(‖Q(gs◦�s) −Q(gs′◦�s′ )‖2

)
, (8)

the L2-norm. The corresponding empirical amplitude trace-variogram (Guo et al., 2020), based on an
tance defined by optimising over Γ (Srivastava and Klassen, 2016), is defined as,

1
2|N(r)|

∑
i,j∈N(r)

inf
�∈Γ

‖Q(gsi◦�) −Q(gsj )‖, r ≥ 0,
{(si, sj) ∶ ‖si − sj‖ ∈ (r − �, r + �)} for a small � > 0. To guarantee the estimated variogram is

negative definite, we further fit a parametric Matérn variogram to the empirical variogram Ṽ (r), resulting
c estimate V̂ (r). In model fitting, the smoothness parameter is fixed at 0.5, while the range � and sill �
through least squares. Finally, we specify the spatial weight as,
− V̂ (‖si − sj‖)∕�̂, i, j = 1,… , 51, (9)
estimated scale parameter of the Matérn family. We note that !ij is in [0, 1] and is 0when ‖si− sj‖ ≥ �̂.

tion, we present our modeling results for infection rate curves based on US states’ daily reported cases
out this section, Ĥi is used to denote the estimated marginal posterior mode of the number of extrema for
e, and functional posterior samples and summaries are shown given this value. Clusters are determined
ted number of extrema. Analysis of estimated posterior phase functions, used to quantify the relative
ema, are useful for identifying sub-clusters.
hows results for some selected US states that are representative of the patterns seen in the estimated
curves as determined by our model. In each of the panels, the dots represent the daily reported cases
f the US states, and the gray lines represent marginal posterior draws of functional parameters from our
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(a)

(b) (c) (d) (e) (f)

A map of the US colored by cluster membership. (b)-(f) Cluster summaries representing posterior mean
(top) and phase (bottom) estimated from MCMC draws. Note: the amplitude functions are rescaled by the
f reported cases in the corresponding US state to aid visualization.

(a) (b) (c)

osterior mean amplitude functions with two extrema colored by phase subcluster membership. (b) Posterior
unctions corresponding to the amplitude functions in panel (a) colored by subcluster membership. (c)
presenting hierarchical clustering results based on the posterior mean phase functions. Note: the amplitude
escaled by the total number of reported cases in the corresponding US state to aid visualization.

en the estimatedmarginal posterior mode of the number of extrema present in the infection rate curve, Ĥi.the pattern that is present for each of the US states, the model appears to reasonably estimate a smooth
curve. These results represent the heterogeneity of shapes that are present in estimated infection rate
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fection rate for North Dakota has only steadily increased throughout the time of the study; US states like
Texas have experienced one prominent peak followed by increasing cases; Georgia and Colorado have

ced two distinct peaks in their infection rate curves, but Colorado’s current infection rate is increasing,
’s is currently decreasing. The middle and bottom rows of the figure display the amplitude and phase
of the infection rate curves. The middle row shows marginal posterior amplitude functions, which are
states with the same number of extrema, Ĥi. The bottom row of the figure displays posterior draws for
ponent, which is able to quantify the relative timing of extrema. This is apparent when comparing the
ls (b) and (c). The model estimates that both NewYork and Texas have two extrema, a peak followed by a
er, themarginal posterior phase functions for NewYork are generally higher than that of Texas, indicating
ion peak of New York was experienced much sooner. Refer to Section 2 of the supplemental material
ect of the regularization parameter, �, on estimation results. The parameter ensures that the pattern of
timated functions are influenced by their neighbors, which in some cases can prevent overfitting.
ows a map of US states colored by cluster memberships determined by the estimated number and timing
anel (a) along with estimatedmarginal posterior mean amplitude and phase functions of US states within
panels (b)-(f). These results indicate that there is strong regional behavior for the shape of infection rate
S. The most prominent regional clusters are the maroon US states in the Northwest, the brown US states
and Midwest region, the yellow US states in the south, and US states in different shades of orange in the
West. The US states in different shades of orange have the same number of extrema, however, the times
xtrema occur separates the groups, characterized by marginal posterior phase mean functions. The group
t orange has peaks concentrated around the end of March and early-April and the group colored in dark
aks concentrated in mid-June. This subclustering based on phase is investigated further in Figure 4. The
hows the marginal posterior mean amplitude and phase functions for the US states in the orange cluster
e differences in the phase functions. A dendrogram visualizing an agglomerative hierarchical clustering
kage (Köhn and Hubert, 2015), based on all of the posterior mean phase functions for US states with two
rms that there are two prominent groups. Of all of the clusters based solely on the number of extrema,
mined that this is the most appropriate to subcluster based on phase.

on
er, we have presented a model to infer infection rate curves in the US from noisy daily reported cases
ntly, this approach provides a flexible model for the spatially correlated, noisy data that directly infers
d timing of extrema of underlying smooth functions, which are crucial in visualizing and understanding
atterns of COVID-19 within the US.
ison with Srivastava and Chowell (2021), which also uses EFDA for clustering of infection rate curves,
has some key methodological differences. We are able to incorporate spatial information for inference
modeling of parameters. We base clustering on the quantity and relative timing of extrema, which aids
ion of clusters compared to unsupervised learning of latent groups based on pairwise distances between
r model performs simultaneous estimation, registration, and clustering of observations in contrast with
ese steps sequentially, which fails to propagate uncertainty from the estimation step to the clustering step.
sed model can be used to assess current severity of infection in individual US states and trends of neigh-
tes to help with pandemic planning. In future work, we believe this model could be adapted within a
ression framework to determine which factors (governmental, behavioral, etc.) are associated with the
s of infection rate curves. This model could be modified for the analysis of county-level data, where the
of zero reported cases in rural counties would need to be explicitly accounted for through the use of a
ikelihood model.
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